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Motivation: Physical-Layer Network Coding

Network Coding:
@ Multiple sources and destinations connected via intermediate
relay nodes
@ Source messages belong to F* for some finite field F
@ Relay nodes compute and forward some function (e.g., a linear
combination over F) of their incoming messages
Wireless Networks:
@ All links between nodes are wireless with additive white
Gaussian noise (AWGN)
@ RR- or C-valued signals broadcast to all neighbouring nodes
@ Superposition of signals received simultaneously at receiver:

t
y= Z hix; + noise,
i=1

h; being the fading coefficient of the link from jth transmitter
to receiver; hjs are known to receiver



Bidirectional Relay

A useful primitive in physical-layer network coding:

@ Nodes A and B have messages X and Y, respectively, which
they want to exchange.

@ There is no direct link between the two nodes; they can only
communicate through an intermediate relay node.

@ The messages belong to some finite set G; to facilitate
message exchange, G is equipped with a suitable addition
operation @ that makes it a finite Abelian group.



Compute-and-Forward

(a) MAC phase: (b) Broadcast phase:

XY

@ u, v are vectors (codewords)
in R

o z~ N(0,0°)

@ Equal channel gains:
W=u+v+2z
(4 denotes addition over R)



Compute-and-Forward

(a) MAC phase: (b) Broadcast phase:

XY

@ u,v are vectors (codewords)
in R9 The broadcast phase is not
relevant to our work.
o z~ N(0,02%))

@ Equal channel gains:
W=u+v+2z
(4 denotes addition over R)



Reliable Computation of X @& Y at the Relay

e Rate: R = 1log, |G|

@ Power Constraint: %HUH2 <P and %HVH2 <P



Reliable Computation of X @& Y at the Relay

e Rate: R = 1log, |G|

@ Power Constraint: %HUH2 <P and %HVH2 <P

Reliable computation of X @& Y at the relay is possible
(for suitably defined @) at any rate R up to

L (1+7D>
70 — —
2 %82\ 5T ;2

[Narayanan et al. (2007), Nazer & Gastpar (2007)]



Let vi,Vo, ..., Vg be linearly independent vectors in RY.
Theset A = {39, av; : a; € Z} is called a (full-rank) lattice.

A lattice in R2.



Define Qa(x) := arg minycpl|x — Al
The fundamental Voronoi region of A is defined as

V(A) == {y € R?: Qa(y) = 0}

Figure: Fundamental Voronoi region of A.



Nested Lattices

If A and Ag are lattices in RY with Ag C A, then Ag is said to be
nested within A, or Ag is a sublattice of A.

N is called the fine lattice and Ag is called the coarse lattice.

Figure: The blue dots indicate the coarse lattice Ag.



Cosets and Coset Representatives

The cosets of Ag in A form a finite Abelian group G = A/Ao.

Figure: A; is the coset representative of A; within V(Ag).



Nested Lattice Codes

Choose a pair of nested lattices Ag C A in RY,

@ Messages: The message set G is identified with A/Ag.
Let Ao, A1,...,Any_1 be the elements of A/Ay.

e Codebook: C=ANV(Ag) ={Aos A1, An-1}
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@ Messages: The message set G is identified with A/Ag.
Let Ao, A1,...,Any_1 be the elements of A/Ay.

e Codebook: C=ANV(Ag) ={Aos A1, An-1}

@ Encoding: Given message /A\;, encoder transmits the coset
representative ;.

Thus, the coset reps must satisfy the power constraint:
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10/40



Nested Lattice Codes

Choose a pair of nested lattices Ag C A in RY,

@ Messages: The message set G is identified with A/Ag.
Let Ao, A1,...,Any_1 be the elements of A/Ay.

e Codebook: C=ANV(Ag) ={Aos A1, An-1}

@ Encoding: Given message /A\;, encoder transmits the coset
representative ;.

Thus, the coset reps must satisfy the power constraint:

1
8||>\,-H2 <P forallj

@ Decoding: The relay receives w = u+ v + z.
O Let W = Qa(w) be the closest point in A to w.
@ The estimate of X @ Y is the coset to which w belongs.
This is called nearest lattice point decoding.
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Achievable Rates

@ The rate of the nested lattice code is R = 2 log, |A/Ag|.

@ By choosing a “good” sequence of nested lattice pairs
(/\gd),/\(d)), with d — oo, reliable computation of X ® Y at
the relay is possible at any rate R up to

1 P
5 |Og2 (()‘2>

@ The techniques of “uniform dithering” and “"MMSE
equalization” at the decoder are used to achieve rates up to

1 | (1 n 77)
—logy | =+ — ).
2 %2 \2 7 52
[Narayanan et al. (2007), Nazer & Gastpar (2007)]
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Reliable and Secure Computation of X @ Y

e X, Y uniformly distributed over some finite Abelian group G
@ u,v are vectors (codewords) in RY
e z € N(0,021)

@ Relay receives w = u 4+ v + z and must compute X @ Y.
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Reliable and Secure Computation of X @ Y

X, Y uniformly distributed over some finite Abelian group G
u,v are vectors (codewords) in RY
z € N(0,021)

Relay receives w = u + v + z and must compute X @ Y.

Security Constraint:

o Perfect Secrecy: w 1L X and w I Y
o Strong Secrecy: Z(w; X) — 0 and Z(w; Y) — 0 as d — cc.
o Weak Secrecy: 17(w; X) — 0 and 1Z(w;Y) — 0 as d — oo.
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Use as Primitive in Secure Communication Schemes

Multi-hop line network using cooperative jamming:
[He and Yener (2008)]

h A
e @@ ©
Phase 2 @X®J1. * @ % .
Phase 3 X®J2X®J2.<JS—@
Phase 4 @ .4—.—>.X & JS X®4
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Use as Primitive in Secure Communication Schemes

Butterfly network:

Phase 1 Phase 2 Phase 3

X1 ® X ® 4

X1 @ X ® A

Xi®eXo® h X ©Xo®h

XieXo®h

X1® 4 X @ X Xu

X ®Xo@h Xi®Xo @ h
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Nested Lattice Coding for Secure Computation

@ Weak secrecy using random binning:
He and Yener, Allerton, 2008.

@ Strong secrecy using universal hash functions:
He and Yener, IEEE Trans. Inf. Theory, Jan 2013.

Reliable and (strongly) secure computation of X @ Y at the relay
is possible, using nested lattice codes, at any rate R up to

iy <1+7>> ,
70 — — —
2 %82\ 5T ;2

[He and Yener (2013)]

15 /40



He-Yener Coding Scheme

Nested lattice codebook
CcR

sgtate e

Linear map g :C - G
(hash function)

Message set G

Randomized Encoding: Given message a € G, a codeword is picked
uniformly at random from g~ *(a) and transmitted.
e Each g~!(a) contains ~ 29 codewords
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Randomized Encoders

@ Messages X, Y i.i.d. ~ Unif(G)
@ Codebook C C R is, in general, much larger than G

@ At Node A, given X = a, the transmitted codeword u € C
is picked according to some prob. distribution Pr[ - | X = a];
similarly at Node B
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Randomized Encoders

@ Messages X, Y i.i.d. ~ Unif(G)
o Codebook C C R is, in general, much larger than G

@ At Node A, given X = a, the transmitted codeword u € C
is picked according to some prob. distribution Pr[ - | X = aJ;
similarly at Node B

@ Rate: R = % log, |G|

o Average Power Constraint: JE[u? <P and JE|v[? <P
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Our Main Result

Theorem (Shashank, K. and Thangaraj (2013))

(a) Reliable and perfectly secure computation of X @ Y at the
relay is possible at any rate R up to

! | P 1-—1

=~ 10 — | —1—logye

2 g2 2 g2
under an average power constraint.

(b) If perfect secrecy above is relaxed to strong secrecy, then any
rate R up to

1 1 P 1
5 |0g2 <2 aF 0_2> — 5 |Og2(2e)

is achievable under an average power constraint.
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A Comparison of Achievable Rates

8 —— Perfect secrecy
-~ Strong secrecy
—— He&Yener: Strong secrecy

° 7 —— Nazer&Gastpar: No secrecy
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Our Coding Scheme

Choose a “good” pair of nested lattices Ag C A in RY.
Choose a “good” probability density f(x) defined on RY.

@ Messages: The message set G is identified with A/Ay.
Let Ao, A1,...,Ay_1 be the elements of A/Ag.

@ Codebook: C=A

@ Randomized Encoding: Given message A;, encoder picks a
codeword u € A; to be transmitted, according to a prob.
distrib. p; defined as follows:

ziyfu)  fueh
0 otherwise

where Z(Aj) = > yep, f(u).

@ Decoding: Nearest lattice point decoding

20/ 40



Major Departures from Previous Coding Schemes

@ Codebook C is countably infinite

@ Prob. distributions used for randomization are obtained by
sampling a pdf f at lattice points:

e.g., (\,A\o) = (Z,27Z) and a Gaussian density f

e pdf f chosen so that %IEHUH2 <P and %H‘EHVH2 <P
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Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our
coding scheme!

Strong secrecy obtained by choosing f to be an /(0,7 /) density:

1 _ lIxl?
2P

f(x)= We
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Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our
coding scheme!

Strong secrecy obtained by choosing f to be an /(0,7 /) density:

1 _ lIxl?
2P

f(x)= We

Nested lattice codes with discrete Gaussian distributions were
previously proposed for the Gaussian wiretap channel
by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]
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Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our
coding scheme!

Strong secrecy obtained by choosing f to be an /(0,7 /) density:

1 _ lIxl?
2P

f(x)= We

Nested lattice codes with discrete Gaussian distributions were
previously proposed for the Gaussian wiretap channel
by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]

Finding an f that yields perfect secrecy is a more interesting story
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Noiseless Setting

X, Y iid. Bernoulli(1/2) rvs, X & Y is their modulo-2 sum

Want real-valued rvs U and V such that
(1) (X, U) L (Y. V)

(2) U+ V determines X @ Y

) U+VIULXandU+V LY

Use the nested lattice pair (A, N\o) = (Z,27): Z]2Z = Z>.
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Randomized Encoding

At Node A:
e If X =0, transmit an even integer U picked according to
Pr[U = k | X = 0] = po(K)
for a pmf pg supported within the even integers.
o If X =1, transmit an odd integer U picked according to
PrlU =k | X =1] = p1(k)
for a pmf p; supported within the odd integers.
At Node B:
o If Y =b, for b € {0,1}, transmit V picked according to pp.

24 /40



Randomized Encoding

At Node A:
e If X =0, transmit an even integer U picked according to
Pr[U = k | X = 0] = po(K)
for a pmf pg supported within the even integers.
o If X =1, transmit an odd integer U picked according to
PrlU =k | X =1] = p1(k)
for a pmf p; supported within the odd integers.
At Node B:
o If Y =b, for b € {0,1}, transmit V picked according to pp.

1
— pu=pv=p==(po+p1)

Pu|x=0 = Pv|y=0 = Po }
2

Puix=1 = Pv|y=1 = P1

24 /40



How to Ensure (3) U+ V 1L X and U+ V 1L Y?

To satisfy
B)U+VILXandU+V LY

we need
PrilU+V =k | X =a]=Pr[lU+ V = k]

for all k € Z and a € {0,1}.

In other words, pyx—, * py = pu * py for a € {0,1}, i.e.,

Po*p=p1*p=p*p.

(Recall: py =py =p = %(po+ p1))

25 /40



Properties Required of py and p;

To summarize, we need pmfs pg and p; such that

po is supported within the even integers,
p1 is supported within the odd integers

and
Po* p=p1*p=p*p,

where p = 3(po + p1).
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Properties Required of py and p;

To summarize, we need pmfs pg and p; such that

po is supported within the even integers,
p1 is supported within the odd integers

and
Po* p=p1*p=p*p,

where p = 3(po + p1).

Let .(t) = 3 4oz p(k)e be the characteristic function of p,.

We need characteristic functions that satisfy
_ _ 2
Po-P =YL =¢,

with ¢ = 3 (00 + 1)
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Support of py and p;

It can be shown that

@ finitely-supported pg and p; cannot have the required
properties;

@ in fact, light-tailed pmfs pg and p; cannot have the required
properties. [M. Krishnapur]
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The Main Tool

Let f be a pdf on R whose char. function v is supported within
(—m/2,7/2), i.e., ¥(t) =0 for |t| > w/2. For any s € R, define

e}

V(t) = Z (—1)*"y(t + nm).

Then,

(a) W(t) is the char. function of a pmf ps supported within the
set 22+ s ={2k+s: k € Z}, and

(b) for all u € 2Z + s, we have ps(u) = 2f(u).

v

The proof is based upon the Poisson summation formula of Fourier
analysis.
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The Basic Construction

- -T2 2 T

t
=3n -Sm2 -2n -3m2 -m -W2 n2 n 32 2 Sm2 3m

t
T An2 n —3sz nwfn/z 2 592\31:
1

_ 1 .
b I f(x) = — / W(t)e ™ dt
2w
©o 7 po(k) = 2f(k) for all even k € Z (and 0 otherwise )
o1 T pu(k) = 2f(k) for all odd k € Z (and O otherwise )
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The Basic Construction

(1) = 3leo(t) + e1(1)]
1

=3t -Sn2 -2n -3w2 -m  -m2 /2 T 3m2 2n Sm2  3m

=3t -5n2 -2n -3m2 -m  -m2 /2 n 3m2 2n Sm2  3m

,jn/fn/z 2 737:%\7‘7/2
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The Basic Construction

(1) = 3leo(t) + e1(1)]
1

=3t -Sn2 -2n -3w2 -m  -m2 /2 T 3m2 2n Sm2  3m

=3t -5n2 -2n -3m2 -m  -m2 /2 n 3m2 2n Sm2  3m

+ + + + + + + t
,37t/4n/2 “n 737%(7/2 nvmz P SWZ\Sn
-1

0 = ppo = 1
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Coding Scheme for Noiseless Setting

XY

X, Y iid. Bernoulli(1/2) rvs

@ Start with a pdf f having char. func. ¢ supported within
(—m/2,7/2).
@ Let po(k) = 27(k) for even k € Z, and 0 otherwise.
Let pi(k) = 2 f(k) for odd k € Z, and 0 otherwise.
Q If X =0 (resp. Y =0),
choose U (resp. V) according to the pmf pg.
If X =1 (resp. Y =1),
choose U (resp. V) according to the pmf p;.
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Coding Scheme for Noiseless Setting

The resulting Z-valued rvs U and V have finite second moment iff
1 Is twice-differentiable. In this case,

E[U%] = E[V®] = —"(0)

Thus, U and V can satisfy an average power constraint.

32/40



Compactly Supported Characteristic Functions

Example: The probability density function

1 ; _
F(x) = %W if x=0
=8 ifx#0

X

has char. function (t) = max{0,1 — |t|}, shown below:
F(1)
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Compactly Supported Characteristic Functions

Example: The probability density function

1 T
F(x) = %W if x=0
=8 ifx#0

X

has char. function (t) = max{0,1 — |t|}, shown below:

F(1)
1

t

R 1 3

The function f above is not twice-differentiable. Instead, consider
(t) = 3(F = F)(t), which is supported within (—2,2).

@ 1 is the char. function of a pdf

@ 1 is twice-differentiable, with ¢”(0) = —3.
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Secure Computation over G

X, Y iid. rvs unif. distrib. over an Abelian group (G, &) of size N.

@ Select a nested lattice pair Ag C A in R? such that G = A/Aq.
Let Ag,A1,...,Any_1 be the cosets of Ag in A.

@ Select a pdf f : R? — R, with char. func. ¢ supported within
a ball of radius 27p(Af) around the origin, where p(Aj) is the
packing radius of the dual of Ag.

Q Forj=0,1,...,N —1, define
pj(k) = vol(V(Ao)) f(k) for k € Aj; and 0 otherwise

34/40



Secure Computation over G

Q If X =Aj (resp. Y =/)),
choose u € A;j (resp. v € Aj) according to the pmf p;.

Fact

The resulting N-valued rvs u and v have finite second moment iff
1 is twice-differentiable. In this case,

Eful? = E|lv[|* = —Ay(0),

where A = Ele 81-2 denotes the Laplacian operator.
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The EGR Theorem

Let jx denote the first positive zero of the Bessel function J.

Theorem (Ehm, Gneiting and Richards (2004))

If : RY — C is a characteristic function supported within a ball
of radius p around the origin, then

_AG(0) > 2 2, (1)

with equality iff 1)(t) equals a certain 1*(t).
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The EGR Theorem

Let jx denote the first positive zero of the Bessel function J.

Theorem (Ehm, Gneiting and Richards (2004))

If : RY — C is a characteristic function supported within a ball
of radius p around the origin, then

_AG(0) > 2 2, (1)

with equality iff 1)(t) equals a certain 1*(t).

Therefore, the tightest average power constraint that the A-valued
rvs u and v can satisfy is

1o 1 1,
—E =—-FE <P = =7 Jd-
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Coding Scheme for Noisy Setting

X, Y ii.d. rvs unif. distrib. over an Abelian group (G, ®) of size N.
Encoding:

As described for secure computation in the noiseless setting

Decoding:
@ Find the closest lattice point A € A to the received vector w.
@ Decode to the coset A; to which X belongs.
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Performance of Coding Scheme

Perfect Secrecy: As noise z is independent of everything else,
we still have
wl Xandw I Y
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Performance of Coding Scheme

Perfect Secrecy: As noise z is independent of everything else,
we still have
wl Xandw I Y

Reliability: There exist “good” nested lattice pairs Ag C A in RY
for which the resulting coding schemes

1 p(No)?
Rmzlogz( do2 )

where p(/g) is the covering radius of Ag; and
e compute X @ Y within G = A/Ag arbitrarily reliably

@ have rate

38/40



Performance of Coding Scheme

Perfect Secrecy: As noise z is independent of everything else,
we still have
wl Xandw I Y

Reliability: There exist “good” nested lattice pairs Ag C A in RY
for which the resulting coding schemes

1 p(No)?
Rmzlogz( do2 )

where p(/g) is the covering radius of Ag; and
e compute X @ Y within G = A/Ag arbitrarily reliably

@ have rate

Average Power Constraint:

1 )
2

1 2 1 2
_ - — < P = _
dEHuH dEHVH — (/\0) d7T2 P(/\S)2 _/d2
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Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Ag in R? can be chosen

so that
e p(Ao) = i\/dP and  p(A}) ~ ﬁ"ep(}\o)
Also,

o juz = 4[1+0(1)]

2

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of X @ Y at the relay
is possible (for suitably defined &) at any rate R up to

under an average power constraint P.
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Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Ag in R? can be chosen

so that
o p(No) ~ £VdP and p(A}) ~ 4;’e ﬁ(/l\o)
Also,

© juz=2[1+0(1)

2

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of X @ Y at the relay
is possible (for suitably defined &) at any rate R up to

under an average power constraint P.

Open question: Is this the best one can do?
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@ Higher achievable rates? This question is restricted to
coding schemes in which randomization is via pmfs obtained
by sampling pdfs at lattice points.

@ Converse bounds. No upper bound better than
% log, (1 + %) is known for achievable rates for reliable

computation at the relay even without secrecy.

@ Low-complexity decoding. Nearest lattice point decoding is
computationally hard.

40 /40



	Compute-and-Forward
	Lattice and Lattice Codes
	Secure Computation
	Our Coding Scheme
	Noiseless Setting
	Noisy Setting


